5 Implementação da Metodologia

A implementação da metodologia proposta no Capítulo 4 é possível devido ao importante avanço que os métodos numéricos e a capacidade de processamento computacional atuais têm permitido à análise estrutural, em especial o Método dos Elementos Finitos. A avaliação de tensões em estruturas com geometrias e carregamentos complexos é hoje uma prática rotineira de engenharia, em que diversos programas comerciais (ANSYS, ABACUS, por exemplo) apresentam eficiência e versatilidade na construção de modelos numéricos, no processamento numérico e na visualização de resultados por parte do usuário.

Estes códigos que utilizam o Método dos Elementos Finitos são geralmente, divididos em três módulos básicos: pré-processamento, processamento e pós-processamento. No módulo de pré-processamento, que inclui a modelagem do problema, são informados os dados geométricos da estrutura, as constantes do material, os tipos de elementos e a malha a ser utilizada. No módulo de processamento, são realizadas as operações numéricas a partir dos dados de entrada estabelecidos na fase de pré-processamento. No pós-processamento realiza-se a manipulação dos resultados a fim de obterem-se as informações relevantes para o dimensionamento, como o estado de tensões e deformações final do modelo pós ser submetido a um determinado nível de solicitações.

Neste capítulo descreve-se a implementação da metodologia proposta, essencialmente de pós-processamento. Utilizando-se dos resultados extraídos de estruturas modeladas através do programa ANSYS [18]. Discutem-se as técnicas de aquisição e de processamento dos resultados, além da aplicação de normas utilizadas na obtenção do dimensionamento do cordão de solda para cada junta.

5.1. Sistema Coordenado de Referência

Uma junta soldada formada por duas placas planas pode ser modelada utilizando-se, basicamente, formulações de dois elementos: de casca e sólido. Possíveis modelos para a representação de junta soldada são mostradas na Figura 5.1. A modelagem utilizando elementos sólidos, Figura 5.1(b), é a que melhor aproxima o comportamento real da estrutura. No entanto, a elevada quantidade de elementos e o grande número de graus-de-liberdade requeridos tornam o custo computacional da análise muito elevado comparativamente com o obtido com modelos de elementos de casca, mostrado na Figura 5.1(c). Normalmente em análises de chapas este tipo de elemento é o mais utilizado porque os esforços de membrana e de flexão são dominantes, como apresentado no Capítulo 2, utilizando um menor número variáveis de estado, em relação aos modelos de elementos sólidos.

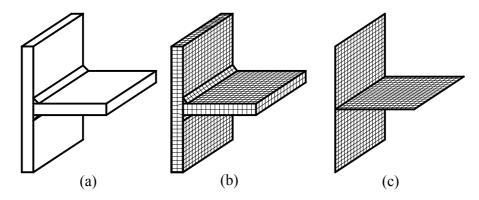


Figura 5.1 – Modelo de uma junta soldada: (a) Real; (b) Utilizando Elementos Sólidos; (c) Utilizando Elementos de Casca

Por outro lado, a utilização de elementos de placa na modelagem de uma junta soldada apresenta a desvantagem de não representar realisticamente a região de interseção das chapas porque os mecanismos de deformação disponíveis no modelo não são adequados. No caso de chapas espessas este problema se evidencia, porque a região ocupada por duas chapas é maior. Desta forma, o elemento de placa é mais usual para se representar estruturas compostas por chapas e a implementação apresentada nesta dissertação se baseia no processamento dos dados extraídos de modelos construídos unicamente com este tipo de elemento.

A formação na Figura 5.2 apresenta um exemplo de estrutura complexa diversas juntas. formada chapas soldadas em Considerando-se o dimensionamento do cordão em todas as juntas da estrutura, torna-se necessário desenvolver-se uma metodologia que defina e ordene cada junta, de forma a permitir a extração de dados do ANSYS, disponíveis em arquivos de texto, de forma organizada e consistente. Coordenadas dos pontos-chave P, Q e Z₂ de cada junta são obtidas, e servem de base para a definição do sistema de coordenadas local x_L-y_L-z_L, de cada junta, conforme mostrado na Figura 5.3. P e Q são os pontos correspondentes ao início e ao fim da junta, respectivamente. Estes pontos definem a direção correspondente ao eixo local $\,\hat{y}_{\scriptscriptstyle L}^{}.$ O ponto P é a origem do sistema coordenado local da junta. O ponto Z2 está contido no plano correspondente à chapa de topo. Os vetores unitários nas direções dos eixos $\hat{z}_{\scriptscriptstyle L}$ e $\hat{x}_{\scriptscriptstyle L}$ são obtidos através das seguintes operações:

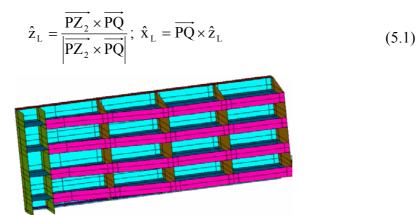


Figura 5.2 – Estrutura Complexa Formada por Diversas Juntas

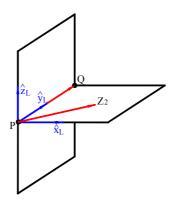


Figura 5.3 – Definição dos Eixos Coordenados a Partir dos Pontos (P, Q e Z₂)

A partir do sistema coordenado local em cada junta, identificam-se as espessuras das chapas que as compõem, importantes no dimensionamento do cordão. Para a identificação das espessuras das chapas em cada junta, desenvolveu-se um algoritmo cujos passos são os seguintes:

- 1º passo: Definem-se as coordenadas do ponto Z₁, ponto médio do segmento de reta formado pelos pontos Q e a extremidade de vetor unitário ẑ_L. Este ponto de referência está contido na superficie média da chapa 1; da mesma forma que o ponto Z₂ (definido anteriormente) está contido na chapa 2, como mostrado na Figura 5.3.
- 2º passo: As coordenadas dos vértices de cada área e a espessura referente a
 esta área são extraídas de arquivos gerados pelo programa ANSYS: as
 listagens de áreas (ALIST.lis), pontos-chave (KLIST.lis), linhas(LLIST.lis) e
 constantes reais (RLIST.lis).

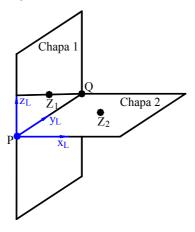


Figura 5.4 – Pontos de referência da chapa 1 (Z_1) e da chapa 2 (Z_2)

• 3º passo: Os elementos são em geral quadriláteros, e podem ser divididos em dois triângulos, como mostrados abaixo na Figura 5.5. São calculadas as áreas de cada um dos dois triângulos. Juntamente com os pontos de referência Z₁ e Z₂ estas áreas formam tetraedros. Verifica-se se o ponto de referência pertence ou não à superfície comparando-se a área lateral do tetraedro com a área da base.

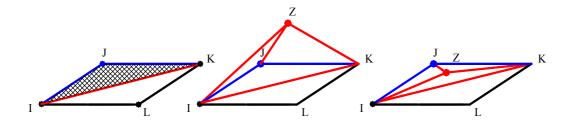


Figura 5.5 – Esquema de Verificação do Ponto de Referência em Relação ao Elemento

Propõe-se uma metodologia para a determinação das distâncias entre a junta e as seções adjacentes relacionando-se estas às espessuras das chapas que compõem a junta. Isto permite uma comparação e avaliação de resultados obtidos para o dimensionamento do cordão de solda ao longo da junta para diversas configurações de espessura, variando-se apenas um parâmetro, denominado coeficiente de afastamento. O coeficiente de afastamento da junta é definido o como a relação entre a distância da seção adjacente à junta e a espessura da chapa analisada.

Esta relação é formulada nas equações (5.2) e mostrada na Figura 5.6, abaixo:

$$a1 = \frac{d2}{2} + ka1 \cdot d1$$
; $a2 = \frac{d1}{2} + ka2 \cdot d2$ (5.2)

onde d1 e d2 são, respectivamente, as espessuras da chapa de aba e de topo e ka1 e ka2, os coeficientes de afastamento destas, respectivamente.

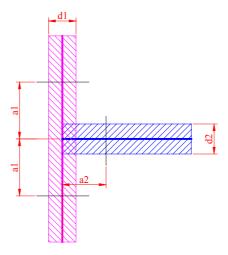


Figura 5.6 – Determinação das seções de leitura de tensões nas seções adjacentes às juntas

5.2. Leitura das Tensões nas Seções Adjacentes e Cálculo da Dimensão Teórica do Cordão de Solda

A formulação para o dimensionamento do cordão, descrita no Capítulo 4, utiliza os valores de tensão nas seções adjacentes à junta. Uma vez estabelecido o sistema de coordenadas local da junta, as espessuras das chapas e as distâncias das seções adjacentes à junta, os valores das componentes de tensão são aquisitados segundo a metodologia a seguir.

O módulo de pós-processamento do programa ANSYS permite a aquisição dos valores de tensão ao longo de "caminhos" ("paths"). Para utilizar-se esta facilidade, é necessário o estabelecimento das coordenadas iniciais e finais do "path", além da definição do número de subdivisões desejado ao longo do seu comprimento. No caso de elementos de casca, é necessária a definição da superfície de leitura das tensões que podem ser a superfície inferior, media, ou superior. A leitura das tensões nas seções adjacentes à junta obedece a um único padrão porque as componentes de de tensão estão referenciadas ao sistema coordenado local da junta. Da incidência de cada elemento estabelecem-se as posições das superfícies superior e inferior da chapa. A Figura 5.7 apresenta, esquematicamente, os dados extraídos para cada ponto do "path" referente a cada junta. Os círculos indicam os pontos de avaliação de tensões. Na superfície superior de cada junta obtêm-se os valores de tensão devidos à flexão, enquanto os demais valores são lidos na superfície média.

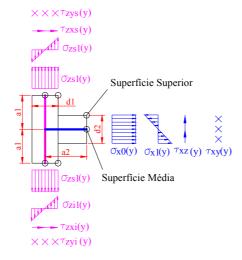


Figura 5.7 – Valores de tensão extraídos nas seções adjacentes

Assim, são necessários doze valores de tensão, para o possível dimensionamento da espessura do cordão de solda em cada ponto do "path" adjacente à junta, considerando-se os dois métodos desenvolvidos no capítulo anterior. A partir do estado de tensões obtido ao longo do "path", obtém-se o dimensionamento do cordão, definido para cada ponto. Na Figura 5.8 é apresentado um exemplo dos valores para a espessura dos cordões superior e inferior (hs e hi) obtidos ao longo do comprimento da junta considerando-se as tensões na chapa de topo e as tensões na chapa de aba. Pode se observar uma substancial variação na espessura calculada ao longo do comprimento da junta, considerando-se os resultados obtidos para as chapas de topo e de aba. No caso abaixo, picos de tensões na solução obtida através do Método dos Elementos Finitos são encontrados devido a presença de chapas ortogonais à junta, apresentando resultados conservativos. Adota-se neste trabalho como solução prática de engenharia, o cordão com espessura constante igual ao valor máximo obtido para o cordão de solda ao longo de toda a junta, desprezando-se os resultados obtidos nas regiões onde existe a presença destas chapas.

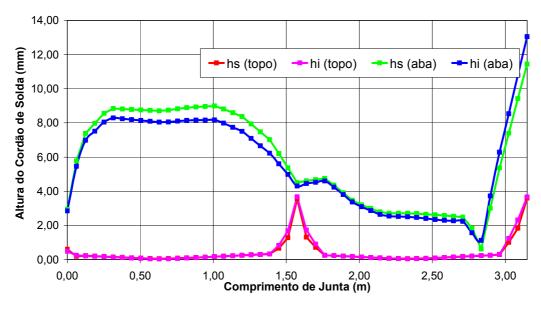


Figura 5.8 – Exemplo de variação da espessura do cordão calculada ao longo da junta

5.3. Dimensionamento a partir de regras estabelecidas pelas normas

Considerando-se os resultados obtidos com a presente metodologia para o dimensionamento do cordão de solda nas chapas que compõem a junta, algumas recomendações estabelecidas por normas devem ser também atentadas. Cordões cujos valores de espessura calculados são muito pequenos em relação à espessura das chapas indicam que a junta considerada não promove uma transmissão de elevada carga e, que devido às dimensões do eletrodo e da estrutura, implicam em valores mínimos para a dimensão do cordão. Por outro lado, valores calculados elevados da altura do cordão em relação à espessura podem indicar um dimensionamento acima da capacidade de transmissão das próprias chapas. Segundo as normas AWS D1.1-81, [11], e AISC/LRFD, [19], os valores máximos e mínimos recomendados para o cordão são definidos como na tabela abaixo:

Espessura da chapa mais espessa da junta	Altura de Cordão Recomendada
De 0 até 6,3mm	$3,2 \le h \le 6,4$ mm
De 6,3 até 13,0mm	$4.8 \le h \le e - 1.6mm$
De 13,0 até 19,0mm	$6.4 \le h \le e - 1,6mm$
Maior do que 19,05mm	$8.0 \le h \le e - 1,6mm$

Tabela 5.1 – Valores máximos e mínimos recomendados pelas normas onde e é a espessura da chapa mais espessa presente na junta.

No dimensionamento do cordão de solda, além das solicitações impostas pelos carregamentos a que junta é submetida, os valores máximos e mínimos recomendados por norma são também considerados.

No capítulo a seguir serão apresentados e discutidos os resultados para o dimensionamento de cordões de solda a partir de diversas análises, de acordo com a implementação proposta no presente capítulo.